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Abstract 

Dental implants are commonly used in dental therapeutics, but dental practitioners 
only have limited information about the characteristics of the implant materials they take the 
responsibility to place in their patients. Manufacturers, scientists and administrations are 
also lacking of a consensual and clear method and terminology to characterize and control 
implant surfaces. The objective of this series of 5 articles is to define and describe the Implant 
Surface Identification Standard (ISIS) system for the chemical and morphological 
characterization of dental implant surfaces, and to use it to characterize and establish the 
respective Identification (ID) Card and code of 62 implant surfaces available on the market. 
In this first part, the current version of the ISIS system and methodology is described and 
discussed. Using standardized protocols of analysis and terminology, each osseointegrated 
implant surface can be defined using a standardized characterization code. First the ISIS 
codification system describes the surface chemical composition: the core material (titanium 
grades, zirconia, hydroxy-apatite) and the chemical modification (impregnation, coating, 
pollution). The system then defines the surface morphology (topography, structures) at the 
microscale (microroughness, micropores, microparticles) and nanoscale (nanoroughness, 
nanopatterning, nanotubes, nanoparticles, nanosmooth), and its global architecture 
(homogeneity, cracks, fractal architecture). This standardized characterization, classification 
and codification system allows to clarify the identity of each surface and to easily sort out 
their differences, to control implant production and to facilitate communication. Therefore it 
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offers a global solution for the manufacturers, scientists, implant users, administrative 
authorities and the interactions of these 4 actors, and it could be suggested as the basis of an 
ISO standard in the future. 
Keywords. Dental implant, nanostructure, osseointegration, surface properties, titanium. 
 

1. Introduction 
Dental implants are commonly used in daily dental therapeutics. Each implant system 

can be defined by several key characteristics that determine its biological behavior, 
particularly the chemical and morphological characteristics of each implant surface [1]. 
Implant users have however very limited information about these characteristics when they 
choose the implant system they will use in their patients. The surface characteristics are often 
advertised by the dental implant company in order to promote their products, but most data 
remain very commercial and without certified evaluation and disclosure of the surfaces 
characteristics [2,3]. Moreover, the scientific literature on the topic is not helpful for 
clinicians. It is a very wide and confusing literature [1], as no global consensual standard of 
terminology and characterization was widely accepted and developed, even if some 
publications characterized partially the main implant systems [4]. The customer remains 
therefore blind when buying the implantable materials he will place in his patients, while he 
is responsible of the implant he is using in most national legislations. Finally, this absence of 
standard of characterization has an industrial impact, as the companies do not have a clear 
and standardized industrial protocol to check and validate their own production [3]. Even if 
some national administrations can suggest some controls of the surfaces, there is no 
consensual and systematic method for checking the products, administrations, companies 
and clinicians are taking the responsibility to use in the population. Industrials, 
administrations and customers are lacking the standardized tools and terminology to define, 
understand and control in details the products available on the market and to communicate 
between each other [5]. 

In 2010, a first standard of characterization, terminology, classification and 
codification of dental implant surfaces was published [1], followed by the publication of a 
first series of 14 implant surfaces Identification (ID) cards [6,7]. This standard is based on 
the use of standardized tools of analysis widely and commonly used in other fields of surface 
science (semiconductor and chemical industry for example). Each osseointegrated implant 
surface can be defined using a characterization code. This code first describes the surface 
chemical composition: the core material (titanium grade, zirconia, hydroxyapatite) and the 
chemical or biochemical modification (impregnation, coating, pollution). This code then 
defines the surface morphological characteristics (topography, structures) at the micrometer 
(microtopography: microroughness, micropores) and nanometer scale (nanotopography: 
nanosmooth, nanoroughness, nanopatterning, nanotubes, nanoparticles). Finally, this code 
is completed with information about the general morphology of the implant surface, such as 
its homogeneity, the presence of cracks or large particle inclusions, and even the possibility 
of a fractal dimension between the 3 levels of investigation (micro, nano and atomic)[7]. This 
standardized codification system allows to clarify the identity of each surface and to easily 
sort their differences. 

In this series of 5 articles, this classification was upgraded following the feedback of 
recent experience [1], and is now termed Implant Surface Identification Standard (ISIS). 62 
different surfaces were analyzed following this characterization and codification system in 
order to give a clear overview of the situation of the market at this time. In this first part, the 
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final form of the ISIS system is described in details and discussed. All the terms and 
acronyms are regrouped in the standardized ISIS Table, and explained in the following 
sections of this article. 

 

2. What is exactly an osseointegrated implant surface? 
From a strict physical standpoint, a surface could be defined as the sudden 

interruption of the atomic arrangement of a material. The surface does not show the same 
properties as the bulk material. Each new surface is in fact a new biomaterial in itself. The 
best example is titanium itself: the bulk of a pure grade 4 titanium implant is mostly 
titanium, but the surface is a TiO2 layer [1]. 

The problem is then to define what thickness of the peripheric part of the bulk 
material may be considered as the surface. From a strict physical standpoint, the surface may 
be defined by its first Angström-thick crystalline layer. However, in dental implants, the 
detailed chemical characteristics of all surfaces can be found in the first 100nm of the surface 
[4,6]. Moreover, the morphology of all implants must be characterized at the nanoscale [8], 
i.e. between 1 and 100nm, which means that an amplitude of 100nm is the minimum 
thickness to consider to define the surface features. Therefore, the ISIS system defines the 
surface as the 100nm-thick superficial layer of the implant. 

Osseointegration is an experimental-revealed phenomenon assessable on histological 
sections using photonic microscopy, and is often defined as the close contact between bone 
and material [3]. Osseointegration is also a clinically defined concept based on implant 
stability. The original theory of osseointegration rested on the oxidation of implant titanium 
surface. The surgical trauma inherent to implantation induces a severe oxidative stress, and 
the production of free radicals and oxygenated derivatives against the implant induces the 
thickening of the titanium dioxide (TiO2) layer of its surface. Calcium and phosphorus ions of 
the bone matrix are then incorporated within the TiO2 porous layer. This dynamic 
bone/implant interface is the core principle of osseointegration, and of its pathological twin - 
peri-implantitis [9]. 

Nowadays, the osseointegration concept can be generalized to many forms of 
biocompatible surfaces and can be defined more accurately by 2 kinds of bone/implant 
interlocking [1,10]. First, the biochemical interlocking is based on the direct chemical 
interaction of bone tissue with the core material (in general titanium oxide layer, but not 
only); chemical modifications are frequent by incorporation of inorganic phases (like 
Calcium Phosphate CaP) on or within the core material [11,12], to stimulate bone 
regeneration and increase the biochemical interlocking between bone and surface. Second, 
the biomechanical interlocking is based on the direct mechanical interaction and lock of the 
bone tissue within the morphology of the core material (in general rough or porous at the 
microscale)[10,13]; the shape of the microtopography influences also directly the cell and 
tissue behavior. Finally, the presence of significant nanofeatures - still rare in dental implants 
- is a parameter influencing both biomechanical and biochemical interlocking processes [14], 
through proteins adsorptions, mineral chelation, direct cell and tissue interactions and 
induction. 
 Therefore two levels of characterization can be defined for an implant surface [1]. The 
first level is based on the chemical composition of the surface, i.e. the composition of the core 
material and its eventual chemical modifications. The second level is based on the surface 
morphological characteristics, i.e. its topography and structures at the micro- and nanometer 
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scale. These concepts allow us to define accurately the main families and characteristics of 
osseointegrated implant surfaces. 
 

3. Main groups of dental implant surfaces 
 The surface production processes are numerous and the parameters defining each 
process (temperature, pressure, electrolytic solution, time, type and size of blasting particles, 
type and concentration of etching acids for example) can be modified significantly to reach a 
usable surface for dental implants. There is therefore an almost endless number of different 
surface aspects and compositions, even if they can be regrouped by their main specific 
patterns [6]. It is thus needed to define first each surface through its physical and chemical 
characteristics more than through its method of production [1]. Analyzed surfaces can then 
be regrouped by concept of production, in order to facilitate understanding of the main 
patterns of each technology and to compare easily their differences. There are actually only 3 
main logical concepts of production of a surface: modification of the core material 
characteristics, carving of the core material by subtraction or chemical coating of the core 
material. 
 Four main groups of production concept were therefore defined in the ISIS final 
version, based on the feedback of this large study [6]. The Group 1 gathered all surfaces 
produced through modification of the core material characteristics, mostly the alteration of 
the titanium metallurgy through anodization or titanium-plasma spraying (TPS). The Group 
2 gathered all surfaces produced through a subtractive processing to carve the surface 
morphology on the core material. Two subgroups can be defined, based on the techniques 
frequently observed on the market: the group 2A gathered all surfaces produced through a 
subtractive sand-blasting and acid-etching (SLA type); the group 2B gathered surfaces 
produced through all other subtractive methods such as Resorbable Blasting Media (RBM), 
Dual Acid-Etching (DAE) or Subtractive Impregnation Micro-Nanotexturization (SIMN). The 
Group 3 gathered all surfaces produced through chemical coating of the core material. Two 
subgroups can be defined, based on the techniques frequently observed on the market: the 
Group 3A regrouped titanium-based surfaces produced by subtraction and finally covered 
with a nanometric coating (often discontinuous) of Ca, CaP or Na-based nanocrystals; the 
Group 3B regrouped implants covered with a micrometric thick layer of hydroxyapatite 
(mostly Plasma-Sprayed Hydroxyapatite PSHA) or other forms of CaP (Ion-Beam Assisted 
Deposition IBAD, brushite coating, and others), therefore becoming the core material of the 
surface. Finally, the Group 4 gathered all surfaces designed specifically for the collar cervical 
area of the implant (to promote a better stability of the peri-implant bone and gingival 
attachment); this group is a bit artificial as it is not based on the concept of surface 
production, but on the specific use of these surfaces designed for the peri-implant cervical 
implant/bone/gingiva interface, and not strictly for the osseointegration itself. 
 The exact concept group of each surface is often disclosed by the companies (more or 
less clearly), but anyway it can be observed during the in-depth standardized characterization 
of each surface, following the ISIS system. 
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Table. Standardized ISIS Table regrouping all the terms, acronyms and definitions used 
in the Implant Surface Identification Standard (ISIS) system. Details were given in the 
following sections of the article. 
 
 
 
 
 
 

Level of characterization Characteristics and their definitions 
Type Code Definition Code Definition 
 
 
 
 
Chemical 
 
 
 
 

Core Core material G2Ti 
G4Ti 
G5Ti 

G23Ti 
TiZr 

YTZP 
YPSZ 

PSHA 
Brush 

CaP 

Commercially Pure Grade 2 Titanium 
Commercially Pure Grade 4 Titanium 
Ti-6Al-4V Grade 5 Titanium 
Ti-6Al-4V ELI (Extra Low Interstitials) Grade 23 Titanium 
Titanium-Zirconium alloy 
Yttria-stabilized Tetragonal Zirconia Polycrystals 
Yttria-Partially Stabilized Zirconia 
Plasma-Sprayed Hydroxyapatite (thick coating) 
Brushite 
Calcium Phosphate (other forms) 

Mod Modification  
X-RI 
X-LI 
X-HI 

 
X-CC 
X-DC 
X-SC 

 
OPol 

X-IPol 

Impregnation (elements X within the core material) 
<1% : Residual Impregnation 
1 to 5% : Low Impregnation 
> 5% : High Impregnation 
Coating (elements X on the core material) 
Continuous Coating. On the whole surface 
Discontinuous Coating. >50% total surface 
Sprinkled Coating. <50% total surface 
Pollution 
Organic Pollution 
Inorganic Pollution. X = elemental composition 

 
 
 
 
 
 
Physical 

Micro Microtopography  1/ Morphology Type (number of dimensions D) 
R 

Pa/Po 
X-Pt 

Rough (1D) 
Patterned or Porous (2D) 
Particle (3D): X = elemental composition 

 2/ Height Deviation Amplitude (Sa) 
S 

Mi 
Mo 
Ma 

Smooth: Sa = 0 to 0.5µm 
Minimal: Sa = 0.5 to 1µm 
Moderate: Sa = 1 to 2µm 
Maximal: Sa > 2µm 

 3/ Spatial Density (developed area ratio, Sdr%) 
Fl 

Fo 
Ru 
Re 

Flat: Sdr% = 0 to 50% 
Flattened out: Sdr% = 50 to 100% 
Rugged: Sdr% = 100 to 200% 
Rugged extra: Sdr% > 200% 

Nano Nanotopography 
(number of 
dimensions D) 

S 
R 

Pa/Po/T 
X-Pt 

Smooth 
Rough (1D) 
Patterned/Porous/Tubes (2D) 
Particle (3D): X = elemental composition 

Archi Global 
architecture 

F/NF 
Ho/He 
LC/EC 

X-RP 

Fractal/Non Fractal 
Homogeneous/Heterogeneous 
Local Cracks/Extended Cracks along the surface 
Random Particle. X = elemental composition and 
associated characteristics 
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4. Characterization of the core materials and chemical modifications 
 Each surface can be defined by a core material, constituting the main component of 
the implant interface with the bone during the osseointegration process. This core material 
can be altered by chemical modifications that introduce specific ions, crystals or molecules on 
or within the core material [1]. 

 
4.1. Core material 

 For osseointegrated implants, 2 main core materials are currently used: 
predominantly titanium and, if still not very common, zirconia. Titanium is commonly used 
in the grades 2, 4, 5 or 23 forms, due to their chemical and mechanical properties. Grade 4 
Titanium (G4Ti), called commercially pure titanium, shows only some residues (less than 
1%) of iron and oxygen and is the most frequently used for its combination of strength, 
ductility and corrosion resistance. Some companies replaced it with Grade 2 Titanium 
(G2Ti), presenting higher corrosion resistance than Grade 4 but lower strength. Grade 5 
Titanium (G5Ti), called Ti-6Al-4V, is a titanium alloy incorporating 6% of aluminium and 4% 
of vanadium, thus showing greater mechanical strength. Grade 23 Titanium (G23Ti), called 
Ti-6Al-4V ELI (Extra Low Interstitials), is a variation of the G5Ti alloy with similar chemical 
composition and lower interstitial elements content (particularly oxygen), what confers 
improved ductility and fracture toughness. Zirconia implants are currently made of yttria-
stabilized tetragonal zirconia polycrystals (Y-TZP) or yttria-partially stabilized zirconia (Y-
PSZ); their use remains however quite rare. 
 When a surface is coated with micrometric thick layers of another material (for 
example HA), then this coating material becomes de facto the core material of this surface. 
The most frequent example of thick coating is the Plasma-Sprayed Hydroxyapatite (PSHA). 
Thick micrometric coating with brushite was also used, even if it remained very rare. Other 
forms of Calcium Phosphate CaP relatively slim coating were also used. 
 

4.2. Chemical modification: impregnation or coating 
The chemical modification of the surface is considered as an alteration of the core 

material composition with different chemical elements. Chemical modifications can be 
integrated (impregnation) or superficial (coating)[6]. 

An impregnation (for example with Fluorine F or Calcium Ca) is integrated within the 
core material architecture and is therefore not observable during the morphological analysis 
with SEM (Scanning Electron Microscope). It can be residual (<1%), low (between 1 and 5%) 
or high (>5%) depending on the concentration of the impregnated element. The 1% and 5% 
thresholds are arbitrary, but appeared relevant considering the feedback of experience and 
the respective composition of G4Ti (1% residual elements) and G5Ti (6%Al-4%V). 

A coating (for example with CaP or NaCl crystals) is a nanometric superficial layer 
covering the core material architecture. It can be continuous (on the whole surface), 
discontinuous (covering >50% of the total surface) or sprinkled (covering <50% of the total 
surface). Discontinuous and sprinkled coatings are easily detectable during the 
morphological analysis with SEM, while continuous coating is more clearly revealed using a 
chemical in-depth profiling. 

The last types of chemical modifications are the many possible pollutions found on 
dental implant surfaces. Inorganic pollution is very frequent, particularly with various 
chemical residues of the surface processing or packaging such as Silicon (Si), Fluorine (F) or 
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Chlorine (Cl). Some very unexpected contaminant elements can also be found such as Barium 
Ba or Tungsten W, what raises some significant concerns about the security and control of 
implantable devices. Inorganic contaminants have the particularity to not be homogeneously 
distributed on the implant surface, to present unstable profiles and various concentrations 
[6]. 

Organic pollution is less frequent and is associated with the presence of heavy organic 
molecules on the surface (mostly dirt or residues from environment or the handling). All 
implants present normally some Carbon C in their superficial chemical composition, and it is 
mostly related to the adventitious Carbon (mostly CO2 adsorbed from atmospheric exposure). 
However, carbohydrates and other complex C molecules can be identified and are always 
associated with much higher proportions of C in the superficial composition. This kind of 
pollution is often associated with early implant failures or peri-implantitis [9], and is 
therefore important to control. 
 
 4.3. Method of characterization 
 The evaluation of the chemical composition of a surface requires different kinds of 
spectroscopy techniques. Three methods of analysis can be combined for a standardized 
suitable and accurate chemical characterization of dental implant surfaces [1]. 
 X-ray Photoelectron Spectroscopy (XPS)/Electron Spectroscopy for Chemical 
Analysis (ESCA) is based on the irradiation of a surface with monochromatic X-rays, 
resulting in the emission of photoelectrons showing the specific energies of the various 
material elements. XPS is used to determine accurately the superficial atomic composition 
(in %) and chemistry of a wide and thin surface area (typically 100-300µm in diameter, 5 to 
10nm thin)[4]. XPS provides the chemical state of the detected elements, such as the binding 
forms of phosphorus in phosphates, and thus allows to characterize the impregnation of the 
core material after chemical modification. It also allows to clarify whether the C is related to 
adventitious carbon from atmosphere or to organic contaminants. For the ID cards, the XPS 
data are only provided in percentages of atomic composition, but the high resolution spectra 
must also be considered to validate the codification of the chemistry in each card [6]. 

Auger Electron Spectroscopy (AES) is based on the irradiation with a high-energy 
electron beam, resulting in surface atomic excitation and emission of Auger electrons, whose 
kinetic energies are characteristic of the surface elements. AES is less accurate than XPS, but 
it can analyze very small areas of less than 10nm in diameter: it is ideal for checking surface 
chemical homogeneity, using several repetitive analyses on a peak and in a valley within a 
rugged microtopography. Coupled with an ion sputter source, AES can perform a quick and 
accurate in-depth chemical composition profiling of the external surface layer, particularly 
the first 100nm [4]. It is thus particularly useful to characterize a nanometric coating or an 
impregnation on/in a core material, to identify specific core materials such as grade 5 Ti-6Al-
4V titanium alloy (where the percentages of aluminium quickly reach almost 10% of the total 
composition), or to evaluate (in combination with XPS) the TiO2 layer thickness (micrometric 
layer for anodized surfaces, around 5-10nm thin native layer for most other surfaces). Two 
in-depth profiles are often enough to check a sample. Due to the very small size of the AES 
analysis spot, the chemical composition observed in the AES profile may not be exactly the 
same than with XPS; some elements indeed presenting a heterogeneous distribution on the 
microtopography (for example alumina blasting residues or fluoride acid-etching residues) 
are detected through the wide XPS analysis but may be outside of the AES beam [6]. This is 
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part of the homogeneity check. 
In the cases of implants coated with thick layers of calcium phosphates or 

hydroxyapatite, the use of AES analysis is not suitable, as the AES electron beam provokes a 
strong charging effect on these materials that alters significantly the results. In these cases, 
the in-depth analysis of the chemical composition of the external surface layer can be done 
through the use of XPS/ESCA, coupled with an ion sputter source to establish the in-depth 
chemical profile down to 100nm. This method allows a more accurate evaluation of the 
chemical composition than AES, but it is more time-consuming and does not allow an 
accurate homogeneity check (because of the large size of the analysis area with XPS, not less 
than 100µm in diameter). 

Energy Dispersive X-ray Spectroscopy (EDX) is a simple elemental analysis coupled 
to the morphology evaluation by Scanning Electron Microscope (SEM). The irradiation by 
the SEM electron beam indeed results in X-Ray emission with characteristic energies of the 
surface elements. EDX allows to determine the elemental composition of specific points 
down to the nanometer scale and thus to identify particles or structures observed during the 
morphology evaluation. It is therefore a complementary instrument only [1]. 

A wide range of tools can be used to perform a chemical analysis of a surface, for 
example Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Raman 
Spectroscopy, or even Transmission Electron Microscopy (TEM) after Focused Ion Beam 
(FIB) cross sectioning of a sample. However, most of these techniques require a high degree 
of calibration to get relevant quantitative data, and do not truly fit to the requirements of 
osseointegrated surface standardized evaluation. 
 

5. Characterization of the morphology at the micro- and nanoscale 
 The osseointegration performance of a surface is influenced by its topography on the 
micrometric and nanometric levels following two respective different biological mechanisms. 
Both levels should be characterized separately [1]. 
 
 5.1. Microtopography 

At the micrometer scale, the topography can increase the bone/implant contact 
surface and biomechanical interlocking. It has also a direct impact on the cell and tissue 
behavior in contact with the surface. 

Microstructures can be differentiated by their number of dimensions. Microrough 
surfaces have one micrometric dimension (the peak heights). Micropatterns have two 
micrometric dimensions (dimensions of the repetitive pattern), like the micropores created 
by anodization. Microparticles have three micrometric dimensions [1]. 

A topography is characterized by a succession of peaks and valleys. In order to 
quantify the microtopography, several quantitative parameters have been used for 2D profile 
(Ra, Roughness average) or 3D area evaluation. Currently 3D area evaluation is considered to 
be more reliable than 2D profile evaluation, and the ISIS system selected particularly 2 
parameters to quantify and classify the microtopography: Sa and Sdr%. Sa is an amplitude 
parameter, i.e. the Surface average height deviation amplitude of the microtopography, 
calculated on 2D standards extended to 3 dimensions (surface roughness average). Sdr% is a 
hybrid parameter integrating both the number and height of peaks of the microtopography 
on a determined surface, and expressing the spatial density. Sdr% is calculated as the 
developed interfacial area ratio and expresses the increment of the interfacial surface area 
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relative to a flat plane baseline. For a totally flat surface, Sdr = 0 %. When Sdr = 100%, it 
means that the roughness of a surface doubled its developed area. The Sa is an important and 
frequent parameter for the comparison of surfaces and was already used in other 
classifications [13]. 

The Sa and Sdr% values allow to classify the microtopography, following the 
terminology developed in the ISIS system. The morphology mean height deviation amplitude 
(based on Sa) of a surface area can be defined as Smooth (Sa between 0 and 0.5µm), Minimal 
(Sa between 0.5 and 1µm), Moderate (Sa between 1 and 2µm) or Maximal (Sa>2µm). 

The spatial density morphological aspect (based on the developed area ratio Sdr%) of 
a surface area can be defined as Flat (Sdr% between 0 and 50%), Flattened out (Sdr% 
between 50 and 100%), Rugged (Sdr% between 100 and 200%), Rugged extra (Sdr% 
>200%). The final terminology used in the Table and in this series of articles presents some 
minor updates in comparison to the 2 first articles that developed this system [1,6], due to 
the feedback of experience. 
 
 5.2. Nanotopography 

At the nanometer scale, the topography influences the surface energy. A significant 
nanotexturization provides a strong surface energy that increases the wettability to blood and 
the spreading and binding of fibrin and matrix proteins on the surface. It favours cell 
attachment and tissue healing [15], particularly just after implantation at the critical 
moment of the osseointegration process. Specific nanotextures may even directly influence 
cell proliferation and differentiation [16], and the modulation of cell behavior by specific 
nanopatterning of surfaces is currently advocated [8,17,18]. 

Per definition, all surfaces have a nanotopography, i.e. a topography at the nanoscale; 
however only a few present repetitive and significant nanofeatures/nanostructures, while the 
majority are smooth on the nanoscale and have therefore no specific properties related to 
their nanotopography. Companies may therefore play on words with the term « nano » and 
the understanding of this clear terminology is important [14]. 

A nanostructure is an object of intermediate size between molecular and microscopic 
(micrometer-sized) structures, and defined between 1 Angström (0.1nm) and 100nm. In 
describing nanostructures, the number of dimensions on the nanoscale must be 
differentiated. Nanorough surfaces have one dimension on the nanoscale, i.e. the peak height 
of the repetitive and homogeneous texture is nanometric. Nanopatterns have two dimensions 
on the nanoscale, i.e. the diameter of the repetitive pattern is nanometric (for example, 
chemically-carved nanopatterns or nanotubes by anodization). Nanoparticles have three 
dimensions on the nanoscale, i.e. the particle is nanometric in each spatial dimension. When 
a surface presents no repetitive and significant nanostructures (insignificant texture, no 
pattern, no particle), it should be considered as nanosmooth [1]. 

The characterization of the nanotopography remains difficult to standardize in a 
quantitative way, due to the physical limits of instruments, and it is mostly based on the 
observation of the morphology [6]. 
 

5.3. Global architecture 
To complete the characterization, some specific morphological characteristics must be 

considered. First, the fractal or non fractal nature of a surface can be determined following 
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the previously suggested definitions [7]. Natural fractals are repetitive patterns self-similar 
across a finite range of scales. When the same type of homogeneous modification is observed 
on the micro-, nano- and chemical scale, then a surface can be considered as a fractal 
ensemble. For example, a microrough (1 dimension), nanorough (1 dimension) and CaP 
impregnated (1 dimension) surface is a common example of fractal architecture. 

Second, the homogeneity or heterogeneity of a surface can be evaluated through the 
synthesis of all the morphological and chemical analyses; a homogeneous surface must 
present a similar micro- and nanotopography and chemical composition/profile all over the 
surface. Finally, general microfeatures like cracks (local and extended) or random particles 
(like TiO2 or Al2O3 particles) on the surface should be reported as well [6]. 
 
 5.4. Method of characterization 

The morphological characteristics of the surfaces can be evaluated using the 
combination of 2 techniques of investigation. 

Scanning Electron Microscopy (SEM) performs a surface mapping using a focused 
electron beam reflecting across a surface. It is the gold standard for morphology 
characterization at the micrometer level (SEM with tungsten source)[4]. FE-SEM (Field 
Emission-SEM) is required to increase the analytical resolution, and to observe and 
characterize the nanotopography and nanostructures [14]. FE-SEM is also needed to analyze 
surfaces with strong CaP coating or impregnation, to avoid the risk of surface charging effect. 
Coupled to an auxiliary EDX detector, this technique also offers an efficient elemental 
identification of the observed structures. Coupled with a metrology stereologic software to 
produce 3D reconstructions of the surface (stereo SEM), this instrument allows to perform a 
quantitative morphology analysis, both at the micrometer and the nanometer level [5]. All 
the areas of the implants should be carefully examined with FE-SEM, from the macroscale to 
the nanoscale. This examination allows to highlight the various morphological characteristics 
of the surfaces at the microscale (rough, porous, particled, cracks, blasting residues, 
homogeneity) and to characterize the nanotopography of each sample (nanosmooth, 
nanorough, nanopatterned or nanoparticled)[6]. 

Optical Profilometer (OP) performs an accurate surface mapping using the 
interferences of light beams. It is an efficient tool for the evaluation of the microtopography 
quantitative parameters (particularly Sa and Sdr%) on wide areas, typically 230x230µm or 
200x260µm [6]. OP is not suitable for a quantitative evaluation of the nanotopography (even 
with recent optimized devices), because in dental implant surfaces the nanotopography is 
hidden in the shadow of the microtopography (leading to uncontrollable artifacts). Several 
guidelines have been suggested to make an accurate quantification of the microtopography 
[13,19], particularly when implant surfaces are not homogeneous all along, such as mean 
values after evaluation of the top, valley and flank of 3 successive threads or mean values 
after repetitive measurements on 3 flat areas [6]. In the ISIS, three spots of analysis are 
selected on the flat cutting edge (or similar area in the lower part) of the implant and the 
corrected mean values calculated on these large areas are placed as reference values in each 
ID card. Another spot of analysis is selected in the middle of the implant between threads to 
serve as a control value for homogeneity check. Based on the feedback of experience and the 
comparison of the various methods [6], this protocol appeared easy and accurate enough to 
evaluate the Sa and Sdr% mean values and classify the various surfaces between each other 
within a standardized system. 
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6. Construction of an ISIS Identification ID card 
Once all the previous analyses have been performed to characterize an implant 

surface, the exact ISIS profile and code can be defined through the filling of the ID card 
(Figure 1). The construction of an ID card is done in 6 experimental steps: 

1/ Name of surface and sample, number of reference and batch are reported in the 
upper left part of the ID card. Each batch - and sometimes each sample - may present 
different chemical and morphological characteristics when the industrial processes are not 
fully controlled, and the detailed identification of the product is very important. 

2/ The chemical composition of the superficial layer is evaluated through XPS/ESCA 
on a wide analysis area (100µm diameter) located between the second and third threads of 
each sample, and the percentages of atomic elements are reported in the table in the upper 
left part of the ID card. The elements and values that differ significantly from the classical 
chemical composition of a titanium-based implant are placed in bold font. 

3/ The in-depth chemical profile of the surface is evaluated through AES down to 
100nm on a very small analysis area (30nm in diameter) located in the middle of the cutting 
edge flat area (or an equivalent flat part, depending on the implant macrodesign) of each 
implant. Two in-depth profiles are established per sample, respectively on a peak and in a 
valley of the surface microtopography. One in-depth profile graph (peak) is reported in the 
upper right part of the ID card. In HA or CaP coated surfaces, the in-depth profile is 
evaluated through XPS/ESCA down to 100nm on a larger area (100µm diameter). 

4/ The microtopography is evaluated with FE-SEM and OP. A first FE-SEM x1000 
magnification picture is placed in the lower left part of the ID card, to illustrate the general 
aspect of the microtopography of each surface (it replaced the interferometer three-
dimensional reconstruction picture used in the early version of the ISIS system)[6]. The Sa 
and Sdr% mean values (and standard deviation) are evaluated through 3 OP measurements 
(+ 1 for control homogeneity check) and placed as reference values in the corner of this first 
FE-SEM picture. 

5/ A second FE-SEM x5000 magnification picture is placed in the lower right part of 
the ID card, to illustrate in more details the morphological characteristics of the surfaces 
(micropores, cracks, blasting residues for example). Finally, a FE-SEM x100,000 
magnification picture is added to show the nanotopography of each surface, a small picture if 
nanosmooth and a wider picture if some nanopatterns or nanoroughness can be observed. 

6/ Finally, the characterization codification table can be filled based on the gathered 
experimental data: identification of the name and company of the surface, definition of the 
core material, description of the various chemical modifications if available, description of 
the microtopographical characteristics, description of the nanotopography, description of the 
global architecture. A final ISIS characterization code can be spelled, and eventually serves as 
an identifier for a database comparison. 

The various experiments can be doubled or tripled to ensure reproducibility, but the 
feedback of experience allows to consider that a limited quantity of analyses per sample is 
enough (1 XPS, 2AES in-depth profiles, 3+1 OP, 1 FE-SEM) in most cases. 
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Figure 1. Construction of an ISIS Identification ID Card. Blank model. The card gathers the 
main information collected during surface analysis following the ISIS protocol and format: 
identification of the sample, XPS/ESCA superficial chemical composition (table in the upper left part), 
AES (or XPS) in-depth chemical profile (graph in the upper right part), FESEM general morphology 
overview and Optical Profilometry (OP) quantification of the microtopography (in the lower left part), 
FESEM detailed microtopography and nanotopography overview (in the lower right part). Finally, all 
data are synthesized in the table at the bottom, and a specific ISIS characterization code can be 
spelled. 
 
 

7. Objectives and perspectives of the ISIS system 
The ISIS protocol was developed to serve industrial, experimental, communication 

and health policy objectives [6]. 
The first objective of ISIS was to offer to manufacturers a simple a clear method to 

characterize the surface chemistry and topography of their products and check the 
homogeneity and quality of their production [3]. ISIS is therefore an industrial standard. 

The second objective of ISIS was to offer to scientists a standardized terminology and 
method to characterize and isolate more clearly the chemical and morphological parameters 
of the implant surfaces they are developing and testing in their experiments [1]. Indeed, 
many studies are comparing the implant surfaces and their biological performances without 
the complete characterization of the tested samples; this frequent situation explains the lack 
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of coherence and clarity of the scientific literature on this topic, where many articles are 
difficult to sort, interpret and compare [20]. In fact, there is a lack of consensus on the 
terminology and some ignorance in the way to characterize the surfaces. The surface 
morphology on the microscale is commonly evaluated, but the methods of quantification of 
the microtopography remain largely debated, as the data are relatively dependent on the 
selected instruments and protocols [13]. Moreover, the characterization of surface chemistry 
(with well-known instruments like XPS/ESCA and AES) and of the nanotopography (with 
FE-SEM), for experimental surfaces or commercially available products, remains often 
neglected and even quite scarce in the literature, even if it started to change in the last years 
[4]. The ISIS protocol offers therefore a complete and homogeneous approach to fill these 
gaps. Finally, the ISIS terminology and codification offer another advantage, as the ISIS 
characterization code can serve as an identifier in a database, to allow easier comparison 
between studies. If the system of characterization code identifier was fully extended, it should 
be possible to make relevant correspondences within the large literature, for a better 
understanding and interpretation of the published results [6,12]. The ISIS system appears as 
a useful instrument to help scientists to clarify the link between surfaces characteristics and 
osseointegration performances. ISIS is therefore also an experimental standard. 

The third objective of ISIS was to offer to implant users a reader-friendly document 
describing and certifying the main features of the implant surfaces they may take the 
responsibility to use in their patients [6], following a standardized protocol for the 
description and control of commercially available products. Indeed, implant users (the dental 
practitioners) have no clear independent information about the products they use: the 
scientific literature and the commercial document from the companies do not offer reader-
friendly, accurate and controlled information. This contradictory situation of responsibility of 
the user towards his patients versus absence of information about the implant raises 
significant concerns, particularly as the surface design is a key of the biocompatibility of an 
implantable device. ISIS offers the possibility to deliver up to date information to the implant 
user, in a format that all professionals can easily learn to read. However, to guarantee the 
credibility and validity of the data, the surface analyses and the establishment of these ID 
cards following the ISIS protocol should always be organized by independent laboratories (to 
avoid conflict of interest), and repeated frequently within the various references and batches 
of a production. ISIS is therefore also a communication standard between implant 
manufacturers and users. 

The fourth objective of ISIS was to offer to health administrations a standardized 
procedure for the description and control of commercial products. Each national 
administration uses nowadays different standards for the registration of implantable 
materials, and many of them may request specific analyses to grant access to a company to 
their national market. In the case of dental implant surfaces, there is actually a lack of control 
and most administrative steps are based on the demonstration that a new implant is 
« substantially equivalent » to previously registered similar implants [3]. The reason of this 
incomplete control is mostly related to the lack of standard method and consensus on the 
way to characterize and control the commercial products [20]. The ISIS therefore allows to 
national administrations to get clear, certified and understandable information about a 
product prior to granting the access to a market, but it also allows to all administrations 
worldwide to communicate between each other and reach similar high standards of control 
and quality [6]. The ISIS system is of particular interest nowadays, as the globalization of 
production and market created new unexpected challenges of health policy: many implants 
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are produced in unknown conditions in different countries with different regulations, and are 
often marketed without any serious control. This situation raises significant public health 
concerns, and requires to develop a simple procedure for an efficient and accurate control. 
The use of the ISIS system also implies to develop a network of certified independent 
laboratories equipped and trained to perform these analyses in proper conditions and 
establish the ID cards of the samples, particularly as these analyses should be repeated 
frequently on the various references and batches of a production, to offer the guaranty of a 
regular and efficient control to the responsible administrations. The ISIS system could 
therefore take the form of an ISO characterization standard, so that this format could be 
standardized and accepted by all administrations worldwide. ISIS is therefore also a health 
policy administrative standard. 

The ISIS system offers thus solutions and perspectives for all actors of the field: 
manufacturers, scientists, users and administrations. It also highlights many transversal 
questions, significant for all actors, concerning the exact identification of products. First, 
even if dental implants are supposed to be carefully manufactured, many implants are not 
homogeneous [6]. This lack of homogeneity can be related to the nature of the production 
process itself or to the presence of many contaminants. When surfaces are very 
heterogeneous, they present different chemical and/or morphological characteristics and a 
different ISIS code depending on the area of analysis. Therefore an implant may present in 
fact different surfaces along, and implants of the same batch may also be very different. 
However, the administrative authorizations are given for one specific product, and the 
industrial production under an administrative approval is supposed to be homogeneous. 
Homogeneity is in fact expected by all actors of the field as a normal characteristic, while this 
is frequently not the case. Second, it is also frequent to observe evolutions of the surface 
characteristics of an implant reference year after year. The companies often change - 
voluntarily or not - their surface production, for example while trying to improve the surface 
cleaning or implant design. However, even if the surfaces may change significantly, the 
administrative authorizations are not reevaluated, and the administrative authorities are in 
fact never informed of the significant evolutions of the products during years. These 
problems of heterogeneity and undisclosed/uncontrolled evolution of surfaces are major 
concerns for all actors in the field (quality control of manufacturers, scientists testing the 
products, customers using the products in confidence, administrations in charge of the 
control for public health protection), and raise serious legal issues that should be considered 
in the future. 

The ISIS system highlights another question about the exact identification of a 
surface: many surfaces are not clearly named (and trademarked) by the companies [6], as if 
the surfaces were not important and specific characteristics of the implant. This detail of 
form in fact reveals a much larger problem of identification, where surfaces process and 
characteristics are not clearly defined by the manufacturer, and therefore frequently evolving 
without notification [3]. For clarity and public health reasons, all surfaces should be clearly 
named. If different versions of the surface exist, the name could easily evolve like in most 
other industries (for example with a 1.0, 2.0, 2.1, etc. marking). From an industrial and legal 
standpoint, each surface should be ideally well defined and characterized, under a specific 
name referring to a specific surface. Evolutions of the regulations are unavoidable in the 
future, and the ISIS system may serve as a simple standard protocol and terminology to 
support it. 

Finally, the ISIS system presents some limitations, like all systems of standardization 
and simplification. The ID card gathers all the key information and is enough to define and 
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compare surfaces, but the data in each card are obviously not exhaustive. For example, the 
chemical analysis methods and results (AES, XPS/ESCA) are accurate, but results are always 
difficult to interpret without the detailed spectrometric graphs and the ability to read them in 
details [4]. This is therefore the role of the scientist establishing the ID card to make a 
correct synthesis of the raw data. Moreover, the OP mean values are also dependent on the 
methodology (measuring equipment, filtering technique)[13], and the surface morphology 
evaluation is dependent on the instruments and terminology. Therefore, the use of the ISIS 
system implies to have well-equipped and trained independent laboratories and teams, able 
to develop their own practical reference database and experience, to perform the analyses in 
adequate conditions and also to translate the raw data and observations into the ISIS reader-
friendly standardized format. 
 

8. Conclusions 
 The ISIS system was developed to establish a complete and polyvalent standard for 
the characterization of implant surfaces, covering the industrial, experimental, 
communication and health policy administrative needs of all the actors of the field: 
manufacturers, scientists, users and administrations. The ISIS ID cards present a great 
practical interest, as it allows to gather the main characteristics of commercially available 
surfaces in a reader-friendly document. In this first article, the content of the system and 
terminology was defined and explained, and the following 4 articles of this series are the 
application and illustration of this system on a wide series of implant surfaces available on 
the market. This system remains flexible and adaptable to new technological evolutions. The 
ISIS system could be an interesting basis for the development of a clear and simple ISO 
standard for dental implant surfaces, but also for other implants such as orthopedic 
implantable devices. 
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